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Abstract

The stochastic gradient descent algorithm, often depicted as
SGD, has been widely employed in various fields of artifi-
cial intelligence and is a prototype of online learning algo-
rithms. In the article, we propose a novel and general frame-
work of one-sided testing for streaming data based on SGD.
The proposed method constructs an online-updated test statis-
tic sequentially by integrating the selected batch-specific es-
timators or its opposite, which is referred to as opposite on-
line learning. Notably, the batch-specific online estimators are
chosen strategically according to the proposed sequential tac-
tics designed by the two-armed bandit process. Theoretical
results prove the strategy’s advantage, ensuring that the test
statistic distribution is optimal under the null hypothesis. We
also supply the theoretical evidence of power enhancement
compared with classical test statistics. In application, the pro-
posed method is appealing for statistical inference of two-
sided testing and it is scalable and adaptable for any model.
Finally, the superior finite-sample performance is evaluated
by simulation studies.

Introduction
In recent years, advanced data collection technologies can
record streaming data set in clinical, financial, and socio-
logical studies, which promotes the development of some
emerging online learning procedure to deal with sequential
batches. For the reason that the computer does not have
enough memory to store the entire data set, the conven-
tional offline-based methods have been less attractive and
no longer applicable.

Online learning procedure, intensively argued in some
advanced machine learning methods, has been popularly
used to update the population parameter of interest. Among
online learning procedures, the stochastic gradient descent
(Robbins and Monro 1951) is a scalable algorithm for pa-
rameter estimation and has recently drawn a great deal of
attention. Unlike other classical methods involving the eval-
uation of an entire dataset for an objective function, the SGD
method uses one data point at a time to compute the gradi-
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ent of the objective function and recursively updates the pa-
rameter estimates. This is also tremendously appealing and
particularly useful in online update settings, such as stream-
ing data, where storing the entire dataset in memory may
not even be feasible. The asymptotic properties of SGD esti-
mators, such as consistency and asymptotic normality, have
been well established; see, for example, Ruppert (1988),
Polyak and Juditsky (1992). We can refer to various online
methods, including stochastic gradient descent (SGD) and
its variants (Chen et al. 2020; Zhu, Chen, and Wu 2021;
Liu, Yuan, and Shang 2022). In detail, Langford, Li, and
Zhang (2009) proposed a variant of the truncated SGD in
online settings. Except for SGD updates, other online learn-
ing methods is referred by aggregated estimating equation
(Lin and Xi 2011), cumulatively updating estimating equa-
tion (Schifano et al. 2016a), renewable estimator (Luo and
Song 2019), diffusion approximation approach (Fan et al.
2018). However, the above online algorithms are enlight-
ened by statistical estimation, and there are rare methods that
argue hypothesis test.

Therefore, this work was motivated by the issue of statis-
tical inference for streaming data, and we have explored that
online updates are closely related to the two-armed bandit
(TAB) process which is the prototype of a slot TAB ma-
chine (Bellman 1956) with two arms L(left) and R(right),
which behaves like obtaining the batch-specific online esti-
mators sequentially. Specifically, at each step with a batch of
data set, we play arm L(left) to derive a batch-specific online
estimator or obtain its opposite form by using arm R(right),
and this procedure is referred to as the opposite online learn-
ing. At last, we integrate all batch-specific estimators based
on the formation of Chen, Feng, and Zhang (2022) be-
cause they have established the central limit theorem (CLT)
for the TAB model, which is the primary theoretical re-
sult for our considered statistical inference. Although Shi,
Song, Lu, and Li (2021) developed an inference procedure
for high-dimensional generalized linear models based on re-
cursive online-score estimation, Deshpande, Javanmard, and
Mehrabi (2021) considered the high-dimensional linear re-
gression and Han, Luo, Lin, and Huang (2021) proposed an
online statistical inference procedure in high-dimensional
linear models with streaming data, their established infer-
ence procedures are based on conventional theoretical re-
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sults of classical normal distribution based central limit the-
orem. Chen and Epstein (2022) have proved that their pro-
posed central limit theorem for the TAB model is superior to
classical CLT because they have used the prior information
to construct the test statistic.

In this paper, we propose a novel online learning proce-
dure for both one-sided and two-sided tests of streaming
data by using bootstrap-based stochastic gradient descent al-
gorithm (Fan et al. 2018) for estimation and employing the
TAB process-based central limit theorem (Chen and Epstein
2022) to integrate all batch-specific estimators.

Our contributions and the merits of the proposed method
of opposite online learning are multiple aspects, including
• It is the first attempt using the TAB model, a simple re-

inforcement learning process, in the standard statistical
testing issue.

• We have concluded the asymptotic distribution of the
proposed test statistic by the TAB process-based central
limit theorem under the null and alternative hypotheses,
which lays an essential theoretical tool for statistical in-
ference.

• The proposed testing procedure is scalable for any statis-
tical inference, including one-sided and two-sided tests.

• The proposed opposite online learning method is a gen-
eralized method, which can be applied to a broader range
of models under streaming data because of the use of
stochastic gradient descent.

The rest of this paper is organized as follows. In Sec-
tion 2, we proposed a bootstrap procedure based on SGD
to estimate the parameter of streaming data. In Section 3,
we established the corresponding theoretical results which
showed more significant power than the traditional test. In
Section 4, we proposed a method to test the significance of
coefficients based on the above theoretical properties. The
finite-sample properties of the proposed method are evalu-
ated through the simulation studies in Section 5. Discussion
is provided in Section 6, and the technical proofs are given
in the Appendix.

Methodology
Problem
Suppose that T batches of data sets {S1, S2, . . . , ST }
are observed in sequence, where the set St =
{(Zt,1, Zt,2, . . . , Zt,Nt)} consists of independent identically
distributed samples with the sample size denoted as Nt.
Thus, after T+1 days, the T+1th batch of data set St will be
incorporated into the set DT+1 = {S1, S2, . . . , ST , ST+1} .

Once a loss function is established according to our pur-
poses, prediction or classification, we can search for optimal
estimates of parameters via some classical optimization al-
gorithms. Hence, we focus on testing the following pair of
hypotheses:

H0 : θ0 ≥ d0; H1 : θ0 < d0,

where d0 is a pre-specified constant. The optimal model pa-
rameter θ0 ∈ Rp is denoted as

θ0 = argmin
θ∈Θ

{L(θ) ≜ E[ℓ(θ;Z)]}.

When θ0 is a multi-dimensional vector, it is natural to con-
centrate on every element of θ0.

Stochastic Gradient Descent for Parameter
Estimation
After the loss function ℓ (θ;Z) is set up, it is reasonable to
utilize the gradient descent method to solve the model pa-
rameters. However, the estimates will fall in local optimal
if the loss function is not a convex one. Additionally, the
large scale of the data makes it unsurmountable to calculate
the gradients of all training data within a tremendously short
time. Consequently, we employ SGD to jump out of the lo-
cal optimal solution and to accelerate the computational ef-
ficiency.

Exploiting the random approximation method (Robbins
and Monro 1951), the stochastic gradient descent algorithm
just uses one observation of the whole data St to update pa-
rameters per iteration, i.e.,

θ̂n,t = θ̂n−1,t − γn∇ℓ
(
θ̂n−1;Zt,n

)
, (0.1)

where the learning rate γn is equal to γ1n
−α with γ1 >

0 and α ∈ (0.5, 1). As proposed by Polyak and Juditsky
(1992), the averaging estimate is given as,

θ̄n,t =
1

n

n∑
i=1

θ̂i,t. (0.2)

Bootstrap Based Stochastic Gradient Descent
It is well known that stochastic gradient descent is still easy
to fall into saddle points and local minimum points. To ob-
tain more robust results, an online bootstrap resampling ap-
proach is used to update recursively the SGD estimators at
time point t, which means that the the properties of the SGD
estimator distribution are considered.

Specifically, let P = {Pi, i = 1, . . . , B} be a set of i.i.d.
non-negative random variables with mean and variance be-
ing equal to one. Likewise, once a observed sample (Zt,n)
arrives, we recursively update the randomly perturbed SGD
estimates by

θ̂∗n,t = θ̂∗n−1 − γnPn∇ℓ
(
θ̂∗n−1;Zt,n

)
θ̄∗n,t =

1

n

n∑
i=1

θ̂∗i ,

where θ̄∗t denotes the estimate by randomly perturbed SGD
algorithm and the asterisk∗ denotes a random perturbation.
After that, the adjusted estimates are yielded by resampling
the set P , i.e,

θ̂bn,t = θ̂bn−1 − γnP
b
n∇ℓ

(
θ̂bn−1;Zt,n

)
,

θ̄bn,t =
1

n

n∑
i=1

θ̂bi ,
(0.3)

where Pb =
{
P b
i , i = 1, . . . , B

}
denotes the resampling

collection of P with b = 1, . . . , B indicating the bth resam-
pling, and we refer to θ̄bt as the estimate obtained by resam-
pling set Pb.
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Algorithm 1: TAB-based Opposite Online Learning

Input: Sequential data St(t = 1, . . . , T )
Set the number of bootstraps B
Maximum number of iterations N
Hyperparameter d0

Output: Qξ
T

1: Constructing the loss function ℓ (θ;Z)
2: Generating bootstrap set Pb, b = 1, . . . , B

3: Set Qξ
0 = 0

4: for t = 1, . . . , T do
5: Update estimates based on Equation (0.3) using a

sample from St

6: Storage the set Et and Mt

7: Set reward function WL
t = Mt and WR

t = −Mt

8: if Qξ
t−1 ≤ 0 then

9: Zξ
t = WL

t and µξ
t = d0

10: else {Zξ
t = WR

t and µξ
t = −d0}

11: end if
12: Update Qt−1 to Qt based on Equation (0.6)
13: end for
14: return Qξ

T

Screening of Elements of Data Set Et

On the basis of the method of the average SGD via bootstrap,
we can obtain a batch of estimates at time point t, which
are denoted as Et =

{
θ̄bt , b = 1, . . . , B

}
. Notably, although

θ̄bt is related to N , the total iteration number, it is typically
assumed that N is ignored on the notation and great enough
to make the algorithm convergent.

Although θ̄bt is earned via a bootstrap procedure, the con-
vergence of the algorithm is still promised when the loss
function is non-convex or the SGD estimates fall into sad-
dle points, resulting in biased estimates. Therefore, it is
a natural idea to eliminate those outliers ( such as sad-
dle points ) from the set Et as far as possible. Specif-
ically, after arranging the elements of the set Et in as-
cending order, we obtain a new set that is still denoted
as

{
θ̄1t ≤ θ̄2t ≤ . . . ≤ θ̄Bt

}
. Then we can select a subset{

θ̄
(B

4 +1)
t ≤ θ̄

(B
4 +2)

t ≤ . . . ≤ θ̄
( 3B

4 )
t

}
that is still denoted as

Et. To estimate the parameter θ0, we take the average of the

set Et =
{
θ̄
(B

4 +1)
t ≤ θ̄

(B
4 +2)

t ≤ . . . ≤ θ̄
( 3B

4 )
t

}
, which is de-

noted as

Mt =
θ̄
(B

4 +1)
t + θ̄

(B
4 +2)

t + . . .+ θ̄
( 3B

4 )
t

(B2 )
.

Opposite Online Learning Procedure
In this section, we will use online estimate Mt sequen-

tially to construct a test statistic.
Firstly, to simulate the TAB process, we refer the uncer-

tain rewards as WL
t = Mt and WR

t = −Mt, and then we
will get a random reward WL

t when pulling the left (L) arm
at time t or its opposite rewards WR

t when pulling the right

(R) arm, which is called TAB-based ”opposite online learn-
ing”.

Additionally, σ2 = var
(
WL

t

)
= var

(
WR

t

)
can be esti-

mated by σ̂2
t = (

∑t
l=1(Ml − M̂t)

2)/(t − 1), where M̂t ≜∑T
l=1 Ml

t . Moreover, since the expectations of WL
t and WR

t
are different, the two statistics just conform to the condi-
tion of the nonlinear central limit theorem (Chen and Ep-
stein 2022), where expectations are different and variances
are identical.

Thus, we can also construct a random reward function
governed by a given strategy ξ = {ϑ1, ϑ2, . . . , ϑT }. Specif-
ically, the random reward function is denoted as

Zξ
t =

{
WL

t , if ϑt = 1

WR
t , if ϑt = 2.

For example, if ϑt = 1 at time point t, the arm ”L” will be
pulled with a random reward of WL

t ; Similarly, if ϑt = 2,
the arm ”R” will be pulled with a random reward WR

t . The
test statistic Qξ

t is

Qξ
t =

1

T

t∑
l=1

Zξ
l +

1√
T

t∑
l=1

Zξ
l − µξ

l

σ̂t
,

where µξ
t = I (ϑt = 1) (d0) + I (ϑt = 2) (−d0) and the

strategy ξ is characterized by

ϑt = 2− I
{
Qξ

t−1 ≤ 0
}
. (0.4)

Note that the selection of µξ
t is an interactive process, where

we will choose the arm L if Qξ
t−1 ≤ 0 and choose the arm R

if Qξ
t−1 ≥ 0 at the time point t. After T days, our final test

statistic can be denoted as

Qξ
T =

1

T

T∑
l=1

Zξ
l +

1√
T

T∑
l=1

Zξ
l − µξ

l

σ̂T
. (0.5)

The distribution of Qξ
T will be stated in Section 3.

In order to update the statistic Qξ
T online, two summary

statistics
{
ST
1 ,ST

2

}
are defined as

ST
1 =

T∑
l=1

Zξ
l , ST

2 =
T∑
l=1

Zξ
l − µξ

l .

So, Qξ
T can be updated by:

Qξ
T =

1

T

{
ST−1
1 + Zξ

T

}
+

1√
T σ̂T

{
ST−1
2 + Zξ

T − µξ
T

}
.

(0.6)
In summary, the statistic Qξ

t is constructed sequentially as
follows: Firstly, the tth batch of samples are observed, and
then the bootstrap SGD method yields a estimate set Et. We
proceed to construct the rewards WL

t and WR
t for the left and

right arm based on the set Et. Subsequently, we obtain Zξ
t

and µξ
t by using the strategy ϑt = 2−I

{
Qξ

t−1 ≤ 0
}

. Mean-
while, we calculate the variance σ̂t based on historical in-
formation and update the statistic from Qξ

t−1 to Qξ
t .Finally,

The details of the opposite online learning method are sum-
marized in Algorithm 1.
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Figure 1: The distribution of B(κ) with different κ.

Theoretical Results
A Novel Distribution
The limit distributions of the statistics Qξ

T are several special
classes of the following distribution family given by (Chen,
Feng, and Zhang 2022).

DEFINITION 1 We define the density function of limit dis-
tribution family, i.e.,

fκ(y) =
1√
2π

e−
(|y|−κ)2

2 − κe2κ|y|Φ(−|y| − κ), (0.7)

where Φ denotes the distribution function of the standard
normal distribution. The variable Y conforms to the above
distribution, which is denoted as Y ∼ B(κ) with parameter
κ ∈ R.

(1) If κ < 0, the distribution of Y is sharp and gets sharper
with decreasing κ.

(2) If κ > 0, the distribution of Y shows two peaks and gets
flatter as κ increases.

(3) If κ = 0, the distribution of Y is standard normal distri-
bution.

Asymptotic Distribution Under the Null and
Alternative Hypotheses
The following theorem gives the limiting distribution of the
statistic Qξ

T and a generalized form has been proved by
(Chen, Feng, and Zhang 2022). When using the estimators
produced by SGD, some assumptions need to be satisfied
and the details are presented in the Appendix.

THEOREM 1 Suppose that φ ∈ C(R), a set of all con-
tinuous functions on R with finite limits at ±∞, is a even
function and monotone on (0,∞).

(1) For any fixed d0, T ≥ 1, we have

lim
T→∞

{
E[φ(Qξ

T )]− E[φ (σd0
ηT )]

}
= 0

where ηT ∼ B (κT ) , κT = [
√
T (d0 − θ0) /σ] − θ0 and

σd0
=

√
1 + (θ0 − d0)

2
/σ2.

Figure 2: d0 = 0.5, θ0 = 0.6

Figure 3: d0 = θ0 = 0.5

(2) For any y ∈ R, if φ denotes a indicator function on
the interval [−y, y], we have

lim
T→∞

Pr
(∣∣∣Qξ

T

∣∣∣ ≤ y
)

= lim
T→∞

[
Φ

(
κT +

y

σd0

)
− e

− 2yκT
σd0 Φ

(
κT − y

σd0

)]
,

where Φ denotes the distribution function of the standard
normal distribution.

LEMMA 1 For any y ∈ R, suppose that φ denotes a indi-
cator function on the interval [−y, y] and θ0 is equal to d0,
we will get κT = −θ0, i.e., Qξ

T ∼ B (κT ) (see Figure 3),
inducing

lim
T→∞

P
(∣∣∣Qξ

T

∣∣∣ ≤ y
)
= Φ(θ0 + y)− e−2θ0yΦ(θ0 − y).

REMARK 1 THEOREM 1 indicates that the limiting dis-
tribution of Qξ

T is determined by κT , which is associated
with d0 and θ0. Specifically, when H0 holds, i.e., d0 ≤ θ0,
it means κT ≤ −d0, inducing the distribution of Qξ

T will be
sharper than the distribution B (−d0) ( see the red line of
Figure 2).

In the Figures 2-4, the blue lines denote the distribution of η,
B(−d0), with d0 = 0.5 and the red blue lines are estimated
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Figure 4: θ0 = 0.48, d0 = 0.5

density plots of Qξ
T with different θ0. Moreover, streaming

data is generated by the mean model, Z = θ0 + ϵ, with
T = 500, B = 50, in which ϵ denotes a continuous Gaussian
noise with E(ϵ) = 0 and Var(ϵ) = 1. The empirical density
function is plotted by 1000 replicates Qξ

T .

REMARK 2 If T is big enough and H1 holds, we can also
know that κT ≥ 0. Hence, the distribution of Qξ

T is flat and
aggregates at both ends of the plot(see the red line of Figure
4).

Rejection Region
Invoking THEOREM 1, we can calculate the rejection fields.
For any d0 > 0 and 0.5 > α > 0, the corresponding critical
value zα

2
is defined by

Pr
(
|Y | < zα

2

)
= 1− α,

where Y ∼ B(−d0). Following the LEMMA 1, zα
2

can be
calculated from the following equation:

Φ
(
zα

2
+ d0

)
− e

−2d0zα
2 Φ

(
−zα

2
+ d0

)
= 1− α,

where Φ denotes the distribution function of the standard
normal distribution.

Since zα
2

can be calculated by the theoretical distribution
B(−d0) with d0 = θ0, we assert that the rejection region is

(−∞,−zα
2
) ∪ (zα

2
,+∞).

Next, we will explain this point. Reviewing the Remarks 1
and 2, we can learn that the null hypothesis d0 > θ0 is equiv-
alent to κT ≤ −d0, so that the limit distribution of Qξ

T ac-
cumulates around 0, i.e.,

lim
T→∞

Pr
(∣∣∣Qξ

T

∣∣∣ < zα
2

)
> 1− α.

Under hypothesis H1, there is a constant C which makes
κT greater than 0 when T is bigger than C. Thus, the limit
distribution of Qξ

T slips to both ends of x-axis, which in-
duces

lim
T→∞

Pr
(∣∣∣Qξ

T

∣∣∣ > zα
2

)
> α,

Algorithm 2: An Extended Two-sided Test

Input: Sequential data St(t = 1, . . . , T )
Set the number of bootstraps B
Maximum number of iterations N
Hyperparameter d0 = 0

Output: Qξa
T ,Qξb

t
1: Constructing the loss function ℓ (θ;Z)
2: Generating bootstrap set Pb, b = 1, . . . , B

3: Set Qξa
0 = 0 and Qξb

0 = 0
4: for t = 1, . . . , T do
5: Update parameter θ based on Equation (0.3) using

data St

6: Storage estimators Et and Mt

7: Set reward function WL
t = Mt and WR

t = −Mt

8: if Qξa
t−1 ≤ 0 then

9: Zξa
t = WL

t and µξa
t = d0

10: else {Zξa
t = WR

t and µξa
t = −d0}

11: end if
12: Update Qξa

t−1 to Qξa
t based on Equation (0.6)

13: if Qξb
t−1 ≥ 0 then

14: Zξb
t = WL

t and µξb
t = d0

15: else {Zξb
t = WR

t and µξb
t = −d0}

16: end if
17: Update Qξb

t−1 to Qξb
t

18: end for
19: return Qξa

T and Qξb
T

20: If
∣∣∣Qξa

T

∣∣∣ > zα
2

or
∣∣∣Qξa

T

∣∣∣ > zα
2

, we reject H0

and the probability, test power, can even approach 1 with the
increasing T . To sum up, when Qξ

T falls into the rejection
field:

(−∞,−zα
2
) ∪ (zα

2
,+∞),

we reject the null hypothesis H0.

An Extension to Two-sided Test
Let us consider the following classical two-sided test:

H0 : θ0 = 0; H1 : θ0 ̸= 0.

Two-sided test is important for linear regression, because
the effect of each predictor variable on the response vari-
able may not always be significant. So we usually perform
a significance test for each predictor variable. In this sec-
tion, we proposed a new significance test procedure based
on the TAB model where θ0 = 0 in regression model im-
plies that the corresponding covariate has no contribution to
the response. The above hypothesis can be converted into
the following two one-sided hypothesis:

Ha0 : θ0 < 0; Ha1 : θ0 ≥ 0, (0.8)
Hb0 : θ0 > 0; Hb1 : θ0 ≤ 0. (0.9)

When both hypothesises Ha0 and Hb0 are rejected, we can
accept hypothesis H0; But if only one of them is accepted,
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Figure 5: θ0 = 0.02

Figure 6: θ0 = −0.02

the hypothesis H0 will also be rejected. Then, we can con-
struct a statistic to test the hypothesises (0.8) and ( 0.9) after
applying the theoretical results in Section 3.

Notably, the strategy ξa = {ϑ1, ϑ2, . . . , ϑT } is identical
with ξ ( see Equation (0.4) ) in Section 2. Similarly, the strat-
egy ξb = {β1, β2, . . . , βT } can be defined as follows, i.e.,

βt = 2− I
{
Qξb

t−1 ≥ 0
}
.

As same as in Section 2, we can construct two reward func-
tions Zξa

t and

Zξb
t =

{
WL

t , if βt = 1.

WR
t , if βt = 2.

(0.10)

Then, the testing statistic are Qξa
T and

Qξb
T =

1

T

T∑
l=1

Zξb
l +

1√
T

T∑
l=1

Zξb
l − µξb

l

σ̂T
, (0.11)

where µξa
t and µξb

t is equal to 0 due to d0 = 0.
LEMMA 2 For any y ∈ R, φ denotes a indicator function
on the interval [−y, y].

lim
T→∞

Pr
(∣∣∣Qξb

T

∣∣∣ ≤ y
)

= lim
T→∞

[
Φ

(
κT +

y

σd0

)
− e

−−2yκT
σd0 Φ

(
κT − y

σd0

)]
,

where κT = [
√
Tθ0/σ] + θ0 and σd0 =

√
1 + θ20/σ

2 with
d0 = 0.

On the one hand, if H0 holds, the distributions of
Qξa

T and Qξb
T are B(0), inducing

Pra ≜ lim
T→∞

Pr
(∣∣∣Qξa

T

∣∣∣ < zα
2

)
= 1− α,

Prb ≜ lim
T→∞

Pr
(∣∣∣Qξb

T

∣∣∣ < zα
2

)
= 1− α,

(0.12)

where zα
2

is the upper αth quantile of the standard nor-
mal distribution. Obviously, under the null hypothesis H0
we have

lim
T→∞

Pr
(∣∣∣Qξa

T

∣∣∣ < zα
2

and
∣∣∣Qξb

T

∣∣∣ < zα
2
|
)

= Pra + Prb − lim
T→∞

Pr
(∣∣∣Qξa

T

∣∣∣ < zα
2

or
∣∣∣Qξb

T

∣∣∣ < zα
2
|
)

> Pra + Prb − 1 = 1− 2α,

Therefore, if the conditions,
∣∣∣Qξa

T

∣∣∣ < zα
2

and
∣∣∣Qξb

T

∣∣∣ < zα
2

,
are satisfied, we will accept H0 with the probability of mak-
ing the first type of error being less than 2α.

On the another hand, if H1 is true, which means Ha0

or hypothesis Hb0 will be accepted, the limit distribution
of Qξa

T or Qξb
T will slip to both end according to THEO-

REM 1 and LEMMA 2. To be more specific, when θ0 > 0,
the distribution of Qξb

T shows two gentle peaks while the
density plot of Qξa

T is more sharp than the normal density
plot. Similarly, when θ0 < 0, Qξa

T also shows two gentle
peaks while the density plot of Qξb

T is more sharp than the
standard normal density plot. Therefore, when the results,∣∣∣Qξa

T

∣∣∣ > zα
2

or
∣∣∣Qξb

T

∣∣∣ > zα
2

, is found, we will reject H0.
After that, we will to seek the probability of making the

second type error. If the alternative hypothesis H1 is right,
we have

lim
T→∞

Pr
(∣∣∣Qξa

T

∣∣∣ > zα
2

or
∣∣∣Qξb

T

∣∣∣ > zα
2

)
> max

{
lim

T→∞
Pr

(∣∣∣Qξa
T

∣∣∣ > zα
2

)
, lim
T→∞

Pr
(∣∣∣Qξb

T

∣∣∣ > zα
2

)}
.

max
{

lim
T→∞

Pr
(∣∣∣Qξa

T

∣∣∣ > zα
2

)
, lim
T→∞

Pr
(∣∣∣Qξb

T

∣∣∣ > zα
2

)}
is a relatively large number because the distribution of Qξa

T

or Qξb
T slides to both ends of the number axis under H1,

which induces that the power is large.
Example 1: If streaming data is generated by a toy model

Z = θ0 + ϵ and the noise ϵ is a normal distribution with
E(ϵ) = 0 and Var(ϵ) = 1, the distribution of Qξb

T is dis-
played in the Figure 5 where the blue line denotes the dis-
tribution B (0) and the red blue line is the empirical density
plots of Qξb

T with B = 100, T = 1000 after 1000 replicates.
Moreover, the simulation shows that the power is as large as
0.9943 with θ0 = 0.02.

Similarly, if θ0 is equal to −0.02, the density plots (the
red line) of Qξa

T are is displayed in the Figure 6.As showed
in simulation, the power is 0.999 under θ0 = −0.02, α =
0.05, B = 100, T = 1000.

Finally, the Algorithm 2 for the two-sided test is shown .
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Figure 7: d0 = 1.01 and θ0 = 1

Figure 8: d0 = 0.9, θ0 = 1

Simulation
We consider some streaming data is sequentially generated
by the following model, i.e.,

Y = f(X,β) + ϵ

where f is the function to be fitted, and ϵ is a random noise,
and β is related to as the parameter θ0.

After that, we are interested in: (1)whether Qξa
T fits the

theoretical distribution B (−d0); (2)whether the distribution
of Qξa

T is sharper than B (−d0) with d0 > θ0; (3)whether the
distribution of Qξa

T is smoother than B (−d0) with d0 < θ0.
Example 2: In this example, we consider the one-sided

hypothesis testing problem in Section 2 and data is gener-
ated by a linear regression model, which meansf(X, θ0) =
θ0 ∗ X . The loss function is the mean square error and 1-
dimensional parameter vector θ0 is firstly considered. The
blue lines in the Figures 8-7 indicate the statistic theoretical
distribution and the red lines indicate the simulated distribu-
tion. Here, We obtained 300 replicates with T = 200, N =
100, B = 30.

When the hypothesis H0, d0 > θ0, holds, the distribution
of Qξ

T is sharper than the distribution B(−d0) (see Figure 8).
When the hypothesis H1, d0 > θ0, holds, the distribution of
Qξ

T slips to two ends (see Figure 7).
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Figure 9: d0 = 1.1, θ0=1
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Figure 10: d0 = 1, θ0 = 1.1

Example 3: In this example ( Figure 9 and Figure 10), We
consider multi-dimensional linear model f(X,β) = βTX ,
where β = (0.2, 0.4, 0.6, 0.8, θ0)

T and the loss function is
the mean square error. Aiming to test θ0 ≥ d0 or θ0 < d0,
we draw the blue lines, which are the plot of distribution
B(−1.1) and B(−1). Finally, the red lines are drawn by 300
replicates of Qξ

T when T = 30, N = 500, B = 30, d0 = 1
and θ0 takes different values.

Discussion
The opposite online learning method proposes a test statis-
tic construction that incorporates the “knowledge” from the
null hypothesis, which is that the expectation of the left arm
under our proposed strategy is greater than 0 when the null
hypothesis is true. Therefore, the test statistic incorporating
prior knowledge and data contains more information, which
is the intuitive understanding of large power enhancement.
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